
Harshada Nazirkar et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.808-811

www.ijera.com 808 | P a g e

Recognization of Satellite Images of Large Scale Data Based on

Map- Reduce Framework

Vidya Jadhav, Harshada Nazirkar, Sneha Idekar, Prof. P.A. Bandgar.
Dept. of Information Technology,

JSPM’s BSIOTR (W), Pune

Abstract
Today in the world of cloud and grid computing integration of data from heterogeneous databases is

inevitable.This will become complex when size of the database is very large. M-R is a new framework

specifically designed for processing huge datasets on distributed sources. Apache’s Hadoop is an

implementation of M-R.Currently Hadoop has been applied successfully for file based datasets.

This project proposes to utilize the parallel and distributed processing capability of Hadoop M-R for handling

Images on large datasets.The presented methodology of land-cover recognition provides a scalable solution for

automatic satellite imagery analysis, especially when GIS data is not readily available, or surface change may

occur due to catastrophic events such as flooding, hurricane, and snow storm, etc.Here,we are using algorithms

such as Image Differentiation,Image Duplication,Zoom-In,Gray-Scale.

Index Terms: Map-Reduce (M-R), HDFS(Hadoop Distributed File System) ,HIPI(Hadoop Image Processing

Interface)

I. INTRODUCTION
Hadoop is a large-scale distributed batch

processing infrastructure. While it can be used on a

single machine, its true power lies in its ability to

scale to hundreds or thousands of computers, each

with several processor cores. Hadoop is also designed

to efficiently distribute large amounts of work across

a set of machines. Hadoop is built to process "web-

scale" data on the order of hundreds of gigabytes to

terabytes or petabytes. At this scale, it is likely that

the input data set will not even fit on a single

computer's hard drive, much less in memory. So

Hadoop includes a distributed file system which

breaks up input data and sends fractions of the

original data to several machines in your cluster to

hold. This results in the problem being processed in

parallel using all of the machines in the cluster and

computes output results as efficiently as possible.

The entire Earth surface has been

documented with satellite imagery. The amount of

data continues to grow as higher resolutions and

temporal information become available. With this

increasing amount of surface and temporal data,

recognition, segmentation, and event detection in

satellite images with a highly scalable system

becomes more and more desirable. a semantic

taxonomy is constructed for the land-cover

classification of satellite images. Both the training and

running of the classifiers are implemented in a

distributed Hadoop computing platform.A scalable

modeling system implemented in the Hadoop M-R

framework is used for training the classifiers and

performing subsequent image classification.

II. LITERATURE SURVEY
Performing large-scale computation is

difficult. To work with this volume of data requires

distributing parts of the problem to multiple machines

to handle in parallel. Whenever multiple machines

are used in cooperation with one another, the

probability of failures rises. In a single-machine

environment, failure is not something that program

designers explicitly worry about very often: if the

machine has crashed, then there is no way for the

program to recover anyway.

Performing computation on large volumes

of data has been done before, usually in a distributed

setting. What makes Hadoop unique is its simplified

programming model which allows the user to quickly

write and test distributed systems, and its efficient,

automatic distribution of data and work across

machines and in turn utilizing the underlying

parallelism of the CPU cores.

Grid scheduling of computers can be done

with existing systems such as Condor. But Condor

does not automatically distribute data: a separate

SAN must be managed in addition to the compute

cluster. Furthermore, collaboration between multiple

compute nodes must be managed with a

communication system such as MPI. This

programming model is challenging to work with and

can lead to the introduction of subtle errors.

III. PROPOSED SYSTEM
In a Hadoop cluster, data is distributed to all

the nodes of the cluster as it is being loaded in. The

HDFS will split large data files into chunks which are

RESEARCH ARTICLE OPEN ACCESS

Harshada Nazirkar et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.808-811

www.ijera.com 809 | P a g e

managed by different nodes in the cluster. In addition

to this each chunk is replicated across several

machines, so that a single machine failure does not

result in any data being unavailable. An active

monitoring system then re-replicates the data in

response to system failures which can result in partial

storage. Even though the file chunks are replicated

and distributed across several machines, they form a

single namespace, so their contents are universally

accessible.

Data is conceptually record-oriented in the

Hadoop programming framework. Individual input

files are broken into lines or into other formats

specific to the application logic. Each process

running on a node in the cluster then processes a

subset of these records. The Hadoop framework then

schedules these processes in proximity to the location

of data/records using knowledge from the distributed

file system. Since files are spread across the

distributed file system as chunks, each compute

process running on a node operates on a subset of the

data. Which data operated on by a node is chosen

based on its locality to the node: most data is read

from the local disk straight into the CPU, alleviating

strain on network bandwidth and preventing

unnecessary network transfers. This strategy

of moving computation to the data, instead of moving

the data to the computation allows Hadoop to achieve

high data locality which in turn results in high

performance.

IV. SYSTEM ARCHITECTURE
The system architecture includes the

following-1.Large no. of images stored in file

system.2.This Bundle of images is fed to hadoop

distributed file system.3.On HDFS , we execute set of

operations like duplicate image removal , zoom in

and find differences among Images,using M-R

Programs.4.The Result is then uploaded in web

server,and shown to user through web application.

V. ALGORITHMS USED
1) Zoom in Algorithm

This algorithm takes the original image,

creates four image tiles out of it, that means splits the

original image into four pieces, re-draws each of the

part on each of the four new images. Size of each of

the new image is equal to the original size. For eg.

Original image = 100*100 size, Split it into four parts

of 50*50 size Each next we re-draw these parts into

100*100 size images. hence, we get four 100*100size

images from original image of 100*100size.

2) Difference Algorithm

Here we divide the images into small

chunks. We compare the respective chunks of image

one and image two.

Comparison process :

1. Compare the intensity of the chunks

2. Compare the color codes of chunks

if chunks are different then mark the chunks with a

red box.Again repeat the comparison process for all

the chunks. And draw a new image with the red

boxes marked i.e. showing the differences. Upload

the difference image on tomcat server.

3)Duplication Algorithm

In this algorithm, we divide the images into small

chunks. We compare the respective chunks of

images. We have a sequence file with all the files of a

binary data and it is the actual job that will filter &

find the duplicates.

4)Grayscale Algorithm

A grayscale image is simply one in which

the only colors are shades of gray. The reason for

differentiating such images from any other sort of

Harshada Nazirkar et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.808-811

www.ijera.com 810 | P a g e

color image is that less information needs to be

provided for each pixel. In fact a `gray' color is one in

which the red, green and blue components all have

equal intensity in RGB space, and so it is only

necessary to specify a single intensity value for each

pixel, as opposed to the three intensities needed to

specify each pixel in a full color image. Often, the

grayscale intensity is stored as an 8-bit integer giving

256 possible different shades of gray from black to

white.

VI. TECHNOLOGY USED
M-R Framework

MapReduce is also a data processing model .

Its greatest advantage is the easy scaling of data

processing over multiple computing nodes. Under the

MapReduce model, the data processing primitives are

called mappers and reducers . Decomposing a data

processing application into mappers and reducers is

sometimes nontrivial. But, once you write an

application in the MapReduce form, scaling the

application to run over hundreds, thousands, or even

tens of thousands of machines in a cluster is merely a

confi guration change. This simple scalability is what

has attracted many programmers to the MapReduce

model.

 Pseudo-code for map and reduce functions for

word counting

map(String filename, String document)

{

List<String> T = tokenize(document);

 for each token in T

{

 emit ((String)token, (Integer) 1);

 }

 }

reduce(String token, List<Integer> values)

{

Integer sum = 0;

 Understanding MapReduce 13

 for each value in values

{

sum = sum + value;

} emit ((String)token, (Integer) sum);

}

The HIPI Framework

HIPI was created to empower researchers

and present them with a capable tool that would

enable research involving image processing and

vision to be performed extremely easily. With the

knowledge that HIPI would be used for researchers

and as an educational tool, we designed HIPI with the

following goals in mind.

1. Provide an open, extendible library for image

processing and computer vision applications in a

MapReduce framework

2. Store images efficiently for use in MapReduce

applications

3. Allow for simple filtering of a set of images

4. Present users with an intuitive interface for

image-based op- erations and hide the details of

the MapReduce framework

5. HIPI will set up applications so that they are

highly paral lelized and balanced so that users do

not have to worry about such details

VII. ACKNOWLEDGEMENT
We take this opportunity to thank our

project guide and Head of the Department Prof.

P.A.Bandgar for their valuable guidance and

mentoring through out this project. Additionally, we

must give great thanks to Miss. Sneha Mam and

Mr.Bhagat sir for guidance and support.

REFERENCES
[1] J. Dean and S. Ghemawat, Mapreduce: Simplified

data processing on large clusters, Communications

of the ACM, vol. 51, no. 1, pp. 107-113, Jan.

2008.

 [2] T. White, Hadoop: The Definitive Guide, 2nd ed.

O’Reilly Media / Yahoo Press, 2010.

 [3] J. Talbot, R. M. Yoo, and C. Kozyrakis,

Phoenix++: Modular mapreduce for shared-

memory systems, in Proc. of the Second

International Workshop on MapReduce and Its

Applications, New York, NY, USA: ACM, 2011,

pp. 9- 16.

 [4] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and

T. Wang, Mars: A mapreduce framework on

graphics processors, in Proc. of the 17th

International Conference on Parallel Architectures

and Compilation Techniques, New York, NY,

USA: ACM, 2008, pp. 260-269.

 [5] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-

H. Bae, J. Qiu, and G. Fox, Twister: A runtime for

iterative mapreduce, in Proc. of the 19th ACM Int.

Symposium on High Performance Distributed

Computing, New York, NY, USA: ACM, 2010,

pp. 810-818.

[6] ADAMS, A., JACOBS, D., DOLSON, J., TICO,

M., PULLI, K., TALVALA, E., AJDIN, B.,

VAQUERO, D., LENSCH, H., AND

HOROWITZ, M. 2010. The frankencamera: an

experimental platform for computational

photography. ACM SIGGRAPH 2010 papers, 1–

12.

[7] APACHE, 2010. Hadoop mapreduce framework.

http://hadoop.apache.org/mapreduce/.

[9] CONNER, J. 2009. Customizing input file formats

for image processing in hadoop. Arizona State

University. Online at: http://hpc. asu. edu/node/97.

[10] P. M. Atkinson and A. R. L. Tatnall. Neral

networks in remote sensing. International Journal

of Remote Sensing , 18(4):699–709, April 1997.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm

Harshada Nazirkar et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.808-811

www.ijera.com 811 | P a g e

BIOGRAPHIES

V.D.Jadhavis pursuing B.E

degree in Information Technology

from JSPM’s BSIOTR (W),

University of Pune, Maharashtra,

India.

H.J.Nazirkar is pursuing B.E

degree in Information Technology

from JSPM’s BSIOTR (w),

University of Pune, Maharashtra,

India.

S.M.Idekar is pursuing B.E degree

in Information Technology from

JSPM’s BSIOTR (W), University

Of Pune, Maharashtra, India.

P.A.Bandgar, has received her

Master’s from SCOE, Pune,

Currently working as a Head of the

department in Information

Technology atJSPM’s BSIOTR

(W), Pune, Maharashtra, India. Her

Research interest is in the field of

Image processing.

